比特币价格·比特币行情
Ctrl+D收藏简单区块链

一文了解最热门的 zkSNARK 方案:Groth16 方案

作者:

时间:2021/1/25 17:32:32

原文标题:一文了解最热门zkSNARK方案:零知识证明引论(三)

在之前的文章中,我们介绍了零知识证明的 基础概念 以及构造 zkSNARK 的 基本思想和方法。从本文开始,我们将逐一介绍目前最热门的 zkSNARK 方案。文章旨在让读者理解这些方案的基本原理。为了方便叙述并容易理解,在叙述方案时,我们会做一些简化处理,重在传达方案的核心思想。

本文介绍的是 Groth16 方案。Groth16 方案,顾名思义,就是 Groth 在 2016 年发表的一篇论文 [Gro16] 中提出的方案。目前为止,Groth16 是在实践中使用最广泛的 zkSNARK (没有之一)。特别一提的,Zcash 目前使用的 zkSNARK 方案就是 Groth16。从性能上,Groth16 的 Verifier 性能是所有 zkSNARK 中最快的,其证明字符串也是最短的。

而 Groth16 的最大缺点就是它需要对每个电路都执行一次可信初始化。

在介绍 Groth16 之前,简单回顾一下 zkSNARK 所要解决的问题。我们称这个问题为「计算验证问题」。

任何计算都可以描述为一个算术电路。一个算术电路可以对数字进行算术运算。电路由加法门、乘法门以及一些常数门组成,如下图所示:

这个例子中的电路包含了 15 个门。这个电路所描述的计算过程需要输入五个数字 x1 到 x5,输出四个数字。

给定一组输入的数字,需要把这个电路中的每个门都计算一遍,才能计算出这个电路的输出。在这个例子中,如果输入是 (1,2,3,4,5) ,则电路的输出为 (-27,14,80,171),如下图所示:

计算验证问题是指,如果一个验证者——不妨叫做 Verifier——只拿到了电路的一组输入和输出,如这个例子中的 (1,2,3,4,5) 和 (-27,14,80,171) ,它该如何验证这是一对合法的输入和输出呢?最简单粗暴的方法就是把这个输入重新扔进电路算一遍。如果电路很大的话,这个验证方法最大的缺点就是效率问题。

有些场景下,效率还不是唯一的问题。例如,输入可能包含 Verifier 不能知道的秘密信息。假设上例中的 (3,4,5) 是秘密输入,Verifier 只能看到 (1,2) ,如下图所示。此时 Verifier 要验证的问题就变成了「是否存在 (?,?,?) 使得电路在输入 (1,2,?,?,?) 的时候的输出是 (-27,14,80,171) 」。这个场景下,即使是简单粗暴的重新计算也不再可行。

一句话概括计算验证问题:Verifier 能否在不知道秘密输入的情况下,高效地验证计算结果?

一个 zkSNARK 就是对上述问题的一个解决方案。使用 zkSNARK,一个证明者,叫做 Prover,可以为计算过程生成一个简短的证明字符串。Verifier 读取这个字符串,就可以判断给定的公开输入和输出是否合法。

Groth16 是众多 zkSNARK 构造方案中的一种。接下来,我们介绍 Groth16 是怎么解决计算验证问题的。

首先,我们重新审视一下 Verifier 的任务:我们只知道电路的前两个输入是 (1,2),我们的目标是要判断是否存在一组合法的秘密输入,使得电路的输出是 (-27,14,80,171)。如果我们换个角度看这个问题,它其实可以描述为:给一个电路,上面有些空格可以填数字,有些空格已经填上了数字,请问是否存在一种填法,能够同时满足每个门的逻辑?

从这个新的角度,计算验证问题被转换成了一个类似于数独那样的填数字游戏:有一些空格,一部分已经填上,请你填上另外一些空格,满足一些限制条件。

然后,我们为每一个要满足的条件列一个方程。这里,每个要满足的条件其实就是一个门的逻辑:加法门的输出等于两个输入之和,乘法门的输出等于两个输入之积。于是,原来的填空游戏就变成了一个多元方程组。上述例子转化得到的方程组如下:

最后,我们对这个方程做一些整理,使得它能够写成矩阵和向量的形式,更加整齐和简洁。我们把每个方程都写成 * = * x * 的模式。尽管并不是所有方程中都有乘法,但我们可以给没有乘法的式子乘上一个 。于是方程组变成了下面这个样子:

把所有方程合到一起,就得到了原方程组的矩阵表示

我们把最终得到的这个矩阵向量方程叫做一个 Rank-1 Constraint System (R1CS)。

总结一下,这一节中我们把计算验证问题转化成了数学问题 R1CS。

在计算验证问题中,Verifier 知道一个电路,拿到公开部分的输入,以及电路的输出,判断它们是否合法。

在零知识证明领域,R1CS 基本上就是电路的代名词。许多 zkSNARK 把 R1CS 问题作为目标问题。不过,大部分 zkSNARK 不会直接对 R1CS 下手,而是把 R1CS 问题继续转化,得到一个等价的多项式问题,再对这个多项式问题设计证明方案。Groth16 也不例外。不同的 zkSNARK 选择的多项式问题各不相同,Groth16 选择的是一个叫做 Quadratic Arithmetic Programming (QAP)的问题。

这一节中介绍一下怎样把 R1CS 问题转化为等价的 QAP 问题。

然后,我们把这些列向量换成多项式,使得多项式方程和原先的向量方程等价。

把向量转化成多项式的一种方式是使用多项式插值。

多项式插值

QAP 问题

现在,我们直接把 R1CS 矩阵中的列向量换成它们的多项式插值,得到的结果如下图所示。

我们用一个表格总结一下上文中提到的所有问题。

为什么要越搞越复杂,把电路问题转化为 QAP 问题呢?一个简单的回答:就是为了引入多项式!多项式是一个强大的工具。多项式的作用,可以理解为一个「杠杆」,或者叫「误差放大器」。如果我们要检查两个长度为 10000 的向量是否相等,一定需要检查 10000 次,哪怕检查过了 9999 个点都是一样的,也不能保证最后一点是相同的。而两个 10000 次的多项式,哪怕非常接近,比如说它们的系数有 9999 个都相同,或者它们在 这些点上的取值都相等,但只要有一个点不同,这两个多项式就截然不同。这意味着,如果在一个很大的范围内,例如 到 当中均匀随机选一个点,两个不同的多项式在这个点上相等的机会只有 。检查两个多项式是否相等,比检查同样规模的向量要快得多,这几乎是所有 zkSNARK 提高 Verifier 效率的根本原理。

QAP 问题就是 Groth16 要用来构造 zkSNARK 的最终问题了。不过,在解释 Groth16 的构造细节之前,我们先准备一些工具。

准备工具

我们假设读者对椭圆曲线群的基本特性和应用有所了解,并采用加法群的记号来描述椭圆曲线群中的点和运算。椭圆曲线群中的元素可以用来表示多项式,并限制 Prover 必须使用给定的多项式来进行线性组合。这正是 QAP 所需要用到的特性。

我们看一下椭圆曲线是怎么用来表示多项式的。

KoE 假设

然而,上述直觉并不能从离散对数假设严格地证明而来。所以,只能把它作为一个新的安全性假设来用。这个假设就叫做 Knowledge-of-Exponent (KoE) 假设。

KoE 假设怎样应用到 QAP 问题上呢?那就是,KoE 允许我们使用椭圆曲线点来表示多项式,并且迫使 Prover 只能从已知的多项式线性组合产生新的多项式。

不过,到目前为止,我们忽略了两个关键问题:

关于第二个问题,一个解决方法就是双线性配对。

现在,我们已经准备好了工具:KoE 假设和双线性配对。接下来,我们就介绍 Groth16 是如何为 QAP 问题构造 zkSNARK 的。

Groth16 方案

Setup

Prove

Verify

解析

我们简单解释一下上述构造为什么能够工作。至于它为什么是安全的,请感兴趣的读者参阅 [Gro16] 原文。

当然,Verifier 的验证式中还包含了许多其他项,但在 Groth 的精心设计下,它们都消掉了。感兴趣的可以自行验证。

本文中,我们解释了 Groth16 这个 zkSNARK 方案的构造原理。我们从算术电路开始,介绍了怎样将计算验证问题转化为 R1CS 问题以及 QAP 问题。然后我们解释了怎样使用 Groth16 方案来证明知道一个 QAP 问题的解。Groth16 方案使用了 KoE 假设以及双线性配对。它的缺点是需要可信第三方进行初始化,而且初始化过程需要对每个电路进行一次。与此同时,Groth16 享有最高效的 Verifier 算法以及最短的证明字符串,使得 Groth16 成为至今仍然应用最广的 zkSNARK 方案。

参考资料

[Gro16] Jen Groth. On the Size of Pairing-based Non-interactive Argument. 2016.

撰文:Cyte

原文标题:一文了解最热门zkSNARK方案:零知识证明引论(三)

参考资料

[Gro16] Jen Groth. On the Size of Pairing-based Non-interactive Argument. 2016.

撰文:Cyte

数据:比特币过去10年总收益率超过62000倍:12月15日消息,数据提供商YCharts对包括比特币、现金、美元等在内的15种资产,过去10年的收益率数据做了整理,其中,比特币10年来的总收益率达到62712倍,每年平均收益率达到2倍,均占首位。[2020/12/15 15:14:21]

HT突破4.9美元关口 日内涨幅为1.29%:火币全球站数据显示,HT短线上涨,突破4.9美元关口,现报4.9001美元,日内涨幅达到1.29%,行情波动较大,请做好风险控制。[2020/9/18]

当前DeFi中锁定资产总价值达24.25亿美元:金色财经报道,据DeBank数据显示,DeFi中锁定资产总价值达24.25亿美元,Compound以6.64亿美元排在首位、Maker锁定资产总价值6.20亿美元、Synthetix锁定资产总价值为4.50亿美元。 \n注:总锁仓量(TVL)是衡量一个DeFi项目使用规模时最重要的指标,通过计算所有锁定在该项目智能合约中的ETH及各类ERC-20代币的总价值(美元)之和而得到。[2020/7/10]

标签:

区块链热门资讯
金色前哨 | ZEN/USDT上线火币上涨80% 2021迎隐私币元年?

金色财经讯,1月25日17时,火币全球站开放ZEN (Horizen) 的USDT交易对 (ZEN/USDT),开盘价格24.235USDT,数分钟后即上涨至44USDT,涨幅达81.56%。截至发稿时价格有所回落,现为33.8USDT。 受此影响,隐私币ZEC、Dash等均有小幅上涨。

2021/1/25 18:15:42
2021最具争议的以太坊EIP-1559提案:不亚于比特币区块扩容?

以太坊EIP-1559提案,由以太坊V神在2018年首次提出,预计使以太坊区块链的收费市场更加可预测并缓解拥堵,但提出后便一度引发争议。更有评论认为其争议性可能不亚于比特币区块扩容,如果处理不当,可能会引发新的分叉。 1月22日消息,以太坊开发者DannyRyan表示,以太坊改进提案EIP-1559预计将于今年推出。

2021/1/25 17:59:32
研报:区块链+工业互联网行业研究报告

伴随着制造业变革与互联网数字经济的交汇融合,云计算、物联网、AI等信息技术与传统制造工艺、管理的集成创新不断加剧,工业互联网应运而生。而在疫情中,工业互联网充分展现了其结构韧性,产能的数字化共享与跨区跨领域的智能协作在抗疫中提供了有力支撑,成为了疫情防控复工复产的关键力量,引起了社会的广泛关注。

2021/1/25 17:43:24
区块链将如何重塑音乐行业?如何拯救音乐制作人?

众所周知,音乐在我们的生活中扮演着重要的角色。从贝多芬到巴赫,从史奇雷克斯到波斯特马龙,一架钢琴的88个琴键可以创作出无数的歌曲,这实则令人惊叹。 但许多音乐爱好者不知道的是,现在艺术家们比以往任何时候都更难维持生计。 流媒体是后瘟疫时代艺术家的主要收入来源,但如今盈利极少,Spotify等数字服务提供商(DSPs)的版税仅为每百万次播放几千美元。

2021/1/25 17:26:52
当前市场下 30系列显卡挖矿投资收益情况

以太坊介绍 根据wiki百科定义,以太坊是一个开源的有智能合约功能的公共区块链平台。通过专用加密货币以太币提供去中心化的虚拟机来处理点对点合约。 以太坊的概念首次在2013至2014年间由程序员Vitalik Buterin受比特币启发后提出,大意为“下一代加密货币与去中心化应用平台”,在2014年透过1CO众筹得以开始发展。

2021/1/25 17:16:00
B2Broker: B2Core 概述

B2Core 负责组织外汇经纪商和加密数字交易所的工作、员工和管理员的后台、交易者的前台、客户的验证功能和注册以及各种支付功能等任务。它已成为许多专业业界的主要选择,包括外汇和加密数字货币经纪商,兑换器,现货和保证金交易所,EMIs和加密数字钱包。

2021/1/25 17:15:54